\[V_{\text{filtrate}} = \text{GFR} = V_{\text{urine}} \times \frac{[U]}{[P]} \]

Given the following information, calculate the glomerular filtration rate \((V_{\text{filtrate}} = \text{GRF}) \) for Patient A and Patient B

<table>
<thead>
<tr>
<th></th>
<th>[Plasma Inulin]</th>
<th>[Urine Inulin]</th>
<th>Urine Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient A</td>
<td>0.06 mg/ml</td>
<td>1.2 mg/ml</td>
<td>6.0 ml/min</td>
</tr>
<tr>
<td>Patient B</td>
<td>0.025 mg/100 ml</td>
<td>0.15 mg/100 ml</td>
<td>1 ml/min</td>
</tr>
</tbody>
</table>

Calculate the GFR in L/hr from the following values
- [Inulin] in urine: 2.0 mg/L
- [Inulin] in Plasma: 0.02 mg/L
- Urine Output: 50 ml/hr

For the same individual, calculate the apparent GFR based on urea
- [urea] in urine: 55.0 mg/L
- [urea] in Plasma: 0.5 mg/L
- Urine Output: 50 ml/hr

Is there a net secretion or reabsorption of Urea in the renal tubules? What is the amount in mg/L?