RABBIT MEAT FOR THE DEVELOPING COUNTRIES
S.D. LUKEFAHR

J.E. Owen

As Comment in this issue makes clear, FAO strongly supports efforts being made to increase production from small animals. The potentialities for the development of small-farm and backyard rabbit meat production are thought to be particularly favourable. This article reviews the progress so far made in a number of developing countries and some of the problems that have arisen.

The European rabbit, Oryctolagus cuniculus, has been kept in captivity in western Europe for meat and skins since Roman times, although it was not truly domesticated until the Middle Ages (Zeuner, 1963). In many developed countries, rabbit production has been transformed from a backyard industry into a commercial industry, in which intensive systems employing large numbers of rabbits are becoming more common. The foremost of these countries is France, which produces approximately 250,000 tons of rabbit meat a year. The per capita consumption of rabbit meat in France is more than 5 kg.

There is evidence that developing countries, such as Ghana and Mozambique, are also beginning to utilize the rabbit as a source of meat. In some of these countries, rabbits have been used for this purpose for many years. For instance, wild rabbits contributed to the diet of the Aztecs of Mexico in pre-Columbian times and were much valued for the nutritional quality of their meat (Davalo, 1954-55; Rodríguez, 1965). These animals, most probably belonging to the genus Sylvilagus or cottontail, which is native to Mexico, were commonly sold live in the Aztec marketplaces of Tenochtitlán (Llamas, 1955).

Today in Mexico the rabbit, in the form of the domesticated variety of Oryctolagus cuniculus, is once more recognized as a useful source of meat (Owen and Arzate Valdez, 1980). The Mexican Government has set up an organization named Dirección General de Avicultura y Especies Menores. This organization has established a series of breeding, distribution and extension training centres throughout Mexico, six of which deal with rabbits. There is also a National Rabbit Centre at Tlapuluto.

The greatest potential for the use of meat rabbits in the developing countries is in those countries that experience national meat shortages. However, even in countries where official statistics indicate adequate consumption levels, the uneven distribution of the supply means that the poorer people are not able to purchase sufficient meat for their needs.

Where a strong market demand exists for rabbit meat, and where reliable feed supplies and supporting services can be obtained, intensive commercial production may be feasible in developing countries. In these countries, however, the vast majority of rabbits are produced under small-scale or backyard systems. It is under such systems that the rabbit can make its most valuable contribution toward supplying meat for the rural and urban poor. Under backyard production systems rabbits are capable of supplying meat in reasonable quantities with relatively low inputs (Owen, 1976).

The high reproductive rate, small body size, and ability to use fibrous plant material and agricultural by-products for food are some of the advantages of rabbits. These have already been pointed out in the literature (Owen, Morgan, and Barlow,
1977). The latter advantage represents a particularly important aspect that will be further discussed in this article. Another advantage is that rabbit farmers do not need access to as much land as they would need for larger livestock. This is important, particularly in urban areas and areas of intensive agriculture.

In recognition of the potential role of the rabbit in contributing to the meat supply of tropical developing countries, a Workshop on Rabbit Husbandry in Africa was held at Morogoro, Tanzania, in 1978. This was organized jointly by the International Foundation for Science, the University of Dar-es-Salaam and the Tanzania National Scientific Research Council. The findings of this Workshop, which was the first of its kind, drew attention to the advantages of rabbit production and also to some of the problems which must inevitably arise as a result of such production. Some of the major points arising from the Workshop are discussed in this article, which reviews rabbit meat production in the developing countries, most of which lie in the tropics.

Breeds. In the developed countries, the New Zealand White has to a large extent displaced most other breeds for commercial meat production. This breed has been found to be superior in terms of breeding and meat production when kept under intensive commercial systems, and various strains have been specially bred and developed for such systems.

The situation in developing countries is different in that a wide variety of breeds are used for meat production. Different breeds are preferred in various countries. For example in Ghana, Flemish Giants, Yellow Silvers and Chequered Giants are popular. In Tanzania, New Zealand Whites and Dutch, and in China, Chinchillas and Japanese Large Whites are used (Oldfield, 1979). In most cases, the use of one or several particular breeds is purely fortuitous, depending on the breeds that were originally available. Various breeds were introduced into different countries for a variety of reasons (Owen,
Morgan and Barlow, 1977), but only in recent times have improved meat breeds been especially imported.

In many countries, it is not at all clear if the breed preferences exhibited are based on sound production information, or how representative the particular strain is of the breed in question. Nowhere has a particular breed of rabbit been selected and specifically developed for tropical conditions. There are, however, some instances of local or indigenous varieties evolving that show increased tolerance to local conditions. The best example of this is the Baladi of the Sudan and the Near East (Table 1). This "breed" is the main type used in the Sudan (El Amin, 1978). It has a small body size and relatively low production characteristics but is hardy and tolerant of local conditions.

Another example is the Criollo of Mexico. There is obvious scope for the development of such local varieties.

Notwithstanding this, in many countries, including Tanzania, Mozambique, Mauritius, Nepal and Mexico, the New Zealand White, although developed for intensive systems in European countries, has adapted very well to tropical backyard conditions. An important point is that there are plenty of sources of good-quality stock in the case of such a popular breed as the New Zealand White. It is no use extolling the virtues of some lesser known breed or variety, if farmers in developing countries are unable to acquire it easily from reliable breeders. It should be pointed out also that the requirements of village farmers are often subjective and not always related to the agricultural performance of a breed. Size and colour can play an important part in the popularity of a given breed or strain. A larger breed may be preferred even though it may have inferior production characteristics to those of smaller breeds available. The Chequered Giant of Ghana is a good example of this. The development of coloured breeds may be desirable, as white rabbits in particular are often associated by farmers and other people with rabbits kept as pets. Certainly, Srivastana and Mukherjee (1976) reported that there was no difference between Albino and non-Albino rabbits in terms of heat tolerance.

Although the domestic rabbit is derived from the cool-temperate European wild rabbit, it has adapted well to tropical conditions provided it has been given sensibly constructed and sited housing. Some depression in reproduction can, however, be expected in very hot weather where ambient temperatures are 30°C or higher (Owen, Morgan and Barlow, 1977). Although no particular breed can be recommended for use in tropical developing countries, a wide variety of improved breeds, including the New Zealand White, can be used, either in their own right or for upgrading purposes.

Housing and housing systems. It is not always possible for the farmer in a developing country to obtain wire, especially galvanized wire-mesh of the correct gauge and mesh size normally recommended for commercial housing. Most backyard units consist of outdoor cages with only crude shelters, if any. In such units, wire is in any case unsuitable for anything but the fronts and floors of

Figure 1. Commercial rabbit breeding system used in Faso, Ghana involving colony housing of certain classes of adult stock. (*)Signifies that the rabbits are kept in groups. Source: Odonkor (1978).
housing, since it affords little protection from weather and disturbances. Suitable housing can be made from a variety of local materials, such as the woven split-bamboo described by McNitt (1978), wood, or even concrete.

A comprehensive set of guidelines for the construction of housing for use in developing countries has been laid down by Rugh (1978).

Wood is the most commonly quoted material used for the construction of backyard units. Pre-treatment with old, used motor-oil is one cheap method of rendering it resistant to the effects of insects and weather (N. Mamuttah, personal communication). However, even wood is very scarce and or expensive in some areas of the world, such as the Sahelian countries. In these areas, rabbits are often kept on hard dirt floors, either in a small compound or allowed to roam around the farmer’s house and backyard. This type of housing can also be seen in the Sudan, Oman and north Ghana. In Saboba, north Ghana, the Konkomba tribe maintains rabbits in thatched-roofed mud huts, sometimes with a small yard, with reasonable success (Williams, 1978).

It is of interest to note that the buck can be put into the doe’s hut for mating, which runs contrary to conventional practice. Certainly, such housing should not be ruled out where there is a shortage of more conventional building materials.

The sensible siting of housing in a suitable location is of course very important. Apart from the actual construction of housing there are also other considerations depending on the type of production system to be employed. In some areas, colony-rearing systems have been encountered with around 10 to 30 rabbits maintained in large wooden houses or in compounds. Such systems have been observed in Pokhara, Nepal, in Tsito, Ghana, and in Salamanca, Mexico. Colony or “feedlot” rearing as it is sometimes called was investigated by Lukefahr et al. (1980), using 34 weanling rabbits at a stocking density of up to two rabbits per square foot. This appeared to work well and less
overall space was required. Moreover, supervision is easier with such systems. Although basic labour is often easily obtained in tropical developing countries, skilled labour is not, and this can be a problem in commercial enterprises employing large numbers of individual wooden houses.

Odonkor (1978) developed a colony-rearing system in Tsoto, Ghana, which is illustrated in the figure. The rabbits are kept in wooden houses of different sizes and circulated around the different sections in an orderly series of transfers, with particular attention being paid to hygiene. After much experimentation, the system now functions reasonably well and rabbits are sold to restaurants in Accra.

An almost infinite variety of feeding and drinking equipment has been successfully made from various materials and items such as old bottles. The main criteria are that cleaning should be easy and spillage minimized. Nest boxes are essential and should always be provided in breeding cages. These, too, can be made from a variety of materials, but are usually made from wood.

Health. Rabbits are prone to a variety of diseases in the tropics as elsewhere. A survey of these diseases, with particular reference to Tanzania, has been made by Semuguruka (1978).

Tropical conditions can, of course, give rise to special problems, especially if adequate protection is not provided against cold winds and rain, which occur seasonally in many parts of the tropics. Pneumonia can develop under these conditions and cause serious loss. Stress of various kinds (e.g., high humidity and high temperatures) can also give rise to respiratory disorders (Semuguruka, 1978).

One of the major disease problems in most countries is coccidiosis, which is particularly harmful to young, weaned rabbits and those kept on solid floors. Damp climatic conditions also increase susceptibility to coccidiosis. A special study of this disease in rabbits was carried out by Aduma (1978) in Kenya and also by McNutt (1978) in Malawi. These studies revealed that good management practices can greatly reduce the incidence of coccidiosis. In particular, good hygiene prevents the build-up of the parasite. Recourse to the use of drugs is not always necessary although this may be advisable in the case of recently weaned rabbits, particularly in the wet season.

Other health problems occurring in developing countries are coryza in Mozambique, cerurose in Togo and fly larvae together with sarcotic mange in Malawi.

It was agreed by the Workshop that the occurrence of disease in rabbits in the tropics can be largely avoided by a high standard of hygiene and careful management. It was also considered that veterinarians in such countries should become better acquainted with rabbit diseases and their treatment.

Feeding and nutrition. Probably the most important characteristic of the rabbit, within the context of this article, is its ability to utilize fibrous plant material as feed.

It has been pointed out that the rabbit, which is a non-ruminant herbivore, is much less able to digest dietary fibre than ruminants (Davidson, 1977). Cattle are reported to be twice as efficient in this respect (Slade and Hinze, 1969). Rabbits, however, are able to digest the non-fibre bound protein in fibrous materials, such as alfalfa, to the same extent as cattle and to utilize it more effectively since it is not broken down in the rumen prior to absorption (Chaseke, 1978; 1979). It is a matter of interest that rabbits have also been shown to utilize protein more efficiently than broilers (Reddy, Rau and Chen, 1977).

The faster rate of passage through the alimentary tract of non-ruminant herbivores allows a higher rate of feed intake. An adequate amount of nutrients can be obtained from relatively poor-quality, high-fibre diets in this way, whereas rumen fill can prevent this happening in the ruminant (Bayley, 1978). It has in fact been stated that hind-gut digestion, which takes place in the rabbit, is a superior adaptation for dealing with high-fibre herbage, provided that intake is not restricted by the quantity of herbage available (Janis, 1976). The rabbit also offsets some of the relative inefficiency of hind-gut digestion by practicing coprophagy.

Butcher et al. (unpublished data) have shown that rabbits can be raised on diets with a wide range of fibre content.

In practice, diets for rabbits can be based largely on herbage although

<table>
<thead>
<tr>
<th>TABLE 1. Production traits of three breeds of rabbit in the Sudan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trait</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No. born per litter</td>
</tr>
<tr>
<td>No. born alive per litter</td>
</tr>
<tr>
<td>No. weaned per litter</td>
</tr>
<tr>
<td>Birth weight (g)</td>
</tr>
<tr>
<td>Weaning weight (g)</td>
</tr>
<tr>
<td>Adult weight (g)</td>
</tr>
<tr>
<td>Source: El Amin (1976)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2. Crude protein content of legumes investigated in Mozambique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td>Indigofera ariet</td>
</tr>
<tr>
<td>Psilotrichum boisviniunum</td>
</tr>
<tr>
<td>Merremia tuberosa</td>
</tr>
<tr>
<td>Lougaena leucocapala</td>
</tr>
<tr>
<td>Source: Gaskin (1976).</td>
</tr>
</tbody>
</table>
the feeding value of various herb species can be expected to vary considerably. For instance, in the Philippines, it was found that Para grass (*Brachiaria mutica*) when fed to breeding does produced better performances than either Napier grass (*Pennisetum purpureum*) or Guinea grass (*Panicum maximum*) (Fierro and Ratnavani, 1975). Walsingham and Large (1977) have shown that weaned New Zealand Whites can produce growth rates of 38-39 g/day up to 2 kg liveweight on diets consisting solely of herbage. However, this was achieved with high-quality lucerne and rye grass, and such good-quality herbage is not always available to the backyard farmer in the tropics.

In most countries, it is difficult to maintain rabbits on fresh grasses and herbage throughout the year. Apart from the seasonal variation in nutritive quality of herbage, many tropical countries experience a serious shortage in the dry season. In some countries, such as Togo and other Sahelian countries, an almost perpetual state of drought exists.

The utilization of legumes could be one answer to the feed problem in the dry season. In countries such as Mozambique, there is an abundance of green feed in the wet season. This coincides with the period of highest temperature and humidity, which tend to decrease production (Gaspari, 1978). In the dry season, which otherwise is a very suitable time for production, there is a shortage of herbage. Deep-rooted legumes such as *Leucaena leucocephala* grow in the dry season and have been investigated in Mozambique (Table 2). These have been found to have high protein contents (Gaspari, 1978).

In recent years, *leucaena* has attracted much attention as a source of livestock feed in the tropics, partly because of its high protein content (25.9 percent) (National Academy of Sciences, 1977).

McNitt (1978), in Malawi, chose *Leucaena leucocephala* and *Tridax procumbens* for a pilot rabbit-feeding study because of their availability in the dry season.

Fed as a supplement to maize bran, in excess of appetite, *leucaena* appeared to have reasonable potential. One problem with this plant is that it contains the toxic amino acid mimosine, which is particularly troublesome to monogastrics. The rabbit, however, appears to be fairly resistant and also finds the leucaena leaves palatable (National Academy of Sciences, 1977).

Ramehura (1978), in Mauritius, has shown that *Leucaena leucocephala* can be used up to a replacement level of 40 percent of a standard diet without affecting the performance of fattening rabbits (Table 3). In this case, the crude protein content of the foliage was 28.0 percent.

The utilization of alfalfa hay, as carried out in Egypt (Aboul-Seoud et al., 1970), is another answer to the dry season problem in countries where the relative humidity is not too high immediately after the growing season. Where hay-making is possible, legume hay (i.e., alfalfa, cowpea, vetch and groundnut) is preferable to grass hay because it has a higher protein content. Alfalfa holds particular promise for rabbit feeding (Cheeks, 1978, 1979; Schwung and Reid, 1979). It is used extensively in the Sudan (El Amin, 1978), and in Mozambique (Gaspari, 1978).

The use of alfalfa and other fibrous plant materials is to be the main part of a project currently being set up by the author at the University of Chihuahua in Mexico.

In many areas it has been possible to produce home-mixed concentrate rations. The availability of agricultural by-products offers particular scope for the production of such feeds on a village basis. Spent breeder's grain is an important constituent of the feeds used at the National Rabbit
Project, Ghana. It is also used in Togo with other materials such as wheat bran, rice bran and groundnut cake (Kangni, 1978).

One problem involved in the feeding of such concentrates is that they are nearly always fed in the form of a meal, since pelleting facilities are not readily available to farmers in developing countries. The use of meals can give rise to considerable wastage through "scrapandering", and selection by the rabbit in the case of coarse-ground meals. The modification of feeding equipment can minimize this (L.N. Odonkor, personal communication).

In the Republic of Korea, concentrate feeds are commonly fed in a mash form (Lukefahr, 1979).

Preliminary work on a collaborative project between the Tropical Products Institute and Reading University, UK, has indicated that other problems can be encountered when feeding meals and mashes to rabbits.

From Table 4 it can be seen that, on a low-energy diet, weaned New Zealand White rabbits are hardly able to produce any weight gain at all from diets fed in meal and mash form (Machin et al., 1980, and unpublished data). Diets of identical composition fed in pelleted form produced growth rates of 21 g/day. In the case of the high-energy diets, the rabbits appeared to be able to cope with the meal and mash presentation much better, but again performance was somewhat poorer than in those fed on pelleted diets. Although wastage was particularly high in the case of the meal presentation, the feed containers were continually toppled up so that the rabbits had excess feed available throughout the trial. These findings have important implications, bearing in mind previous comments concerning the availability of pelleting facilities in developing countries.

It is evident that there are many problems associated with rabbit feeding in tropical developing countries, but there are also many possibilities and in several countries the problems are already being tackled with some success. It is in this area that there is the greatest need for research and development work.

Acceptability of rabbit meat and its marketing. Where meat is eaten the author has never encountered any religious or social taboos against the consumption of rabbit meat. This was also the experience of the delegates at the Workshop on Rabbit Husbandry in Africa.

The only difficulty encountered in a number of countries in relation to the acceptance of rabbits as meat producers was that some people associated rabbits with pet animals, particularly the case of white rabbits. This, however, was not too serious a problem and, in general, rabbit meat appears to have been very well accepted in the poorer areas of most countries where animal protein is in short supply.

In developing countries, most rabbit meat is either consumed by the producers or sold to neighbours on a very limited local market. There are, however, a few examples of commercial rabbit production. Some restaurants and supermarkets in Accra, Ghana, have sold rabbit meat, and in Mexico City and Monterrey, Mexico, there are a few restaurants which specialize in rabbit meat. These commercial industries are, however, relatively small and limited.

Where commercial ventures have been set up in areas with a plentiful meat supply, there have been failures. In such areas, those who have money to buy meat are not usually keen to try a non-traditional source, particularly if the price is not competitive with that of other meats.

Where there is a meat shortage, particularly in African countries and where this commodity is in very strong demand, consumers have been keen to try rabbit meat (Manattian, 1978).

In countries where rabbits are not well known as meat animals, rabbit production should be developed first on a backyard scale. When farmers and the general populace have become more familiar with rabbit meat, the foundations will be laid for a more soundly based commercial industry. In the near future, however, the major potential most definitely lies in low-
TABLE 3. Growth of rabbits fed on different levels of *Leucaena leucocephala*

<table>
<thead>
<tr>
<th>Item</th>
<th>100% CSP</th>
<th>80% CRP</th>
<th>60% CRP</th>
<th>40% CRP</th>
<th>20% CRP</th>
<th>0% CRP</th>
<th>Mean date, where (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight at 42 days (g)</td>
<td>703</td>
<td>582</td>
<td>692</td>
<td>585</td>
<td>699</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>Weight at 70 days (g)</td>
<td>1,626</td>
<td>1,695</td>
<td>1,574</td>
<td>1,449</td>
<td>1,285</td>
<td>1,279</td>
<td></td>
</tr>
<tr>
<td>Final weight at 56 days (g)</td>
<td>2,330</td>
<td>2,281</td>
<td>2,207</td>
<td>2,085</td>
<td>1,951</td>
<td>1,219</td>
<td></td>
</tr>
<tr>
<td>Daily weight gain for 3 weeks (g)</td>
<td>20.10</td>
<td>28.60</td>
<td>27.10</td>
<td>25.00</td>
<td>17.20</td>
<td>9.50</td>
<td></td>
</tr>
</tbody>
</table>

Source: Ramsay (1973).

NOTE: CSP = commercial rabbit pellets; L = *Leucaena leucocephala*.

No significant difference between Group 1 and Groups 2 and 3. Significant differences at 5% level for 3 d.f. between Group 1 and Groups 4, 5 and 6 (randomized block).

TABLE 4. Effect of feed presentation on growth performance of New Zealand White rabbits (with standard deviations where \(n = 4 \))

<table>
<thead>
<tr>
<th>Form of presentation</th>
<th>Pellets</th>
<th>Mash</th>
<th>Meal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolizable energy level = 8 MJ/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial liveweight (g)</td>
<td>1,478.00 ± 47.97</td>
<td>1,328.50 ± 181.22</td>
<td>1,373.00 ± 87.75</td>
</tr>
<tr>
<td>Final liveweight (g)</td>
<td>2,049.75 ± 89.13</td>
<td>1,420.5 ± 484.50</td>
<td>1,374.75 ± 220.09</td>
</tr>
<tr>
<td>Growth period (days)</td>
<td>30.5 ± 0.58</td>
<td>37.75 ± 5.06</td>
<td>42.00 ± 0.00</td>
</tr>
<tr>
<td>Daily weight gain (g)</td>
<td>20.73 ± 3.73</td>
<td>3.45 ± 12.06</td>
<td>3.24 ± 5.91</td>
</tr>
</tbody>
</table>

Metabolizable energy level = 12 MJ/kg

Initial liveweight (g)	1,468.00 ± 216.56	1,427.25 ± 121.87	1,393.25 ± 69.39
Final liveweight (g)	2,072.00 ± 33.33	2,111.25 ± 29.49	2,192.75 ± 73.76
Growth period (days)	19.00 ± 7.57	25.25 ± 4.86	29.50 ± 1.00
Daily weight gain (g)	33.10 ± 4.69	28.00 ± 1.60	26.51 ± 3.65

NOTE: Rabbits were kept at 25°C and fed on diets containing different metabolizable energy levels.
input, small-scale production.

Performance levels. Performance levels achieved in intensive commercial rabbit units in the United Kingdom are 45-50 young reared/doe/year (approximately 5 litters), with meat rabbits achieving slaughter weights of 2 kg in 2-2½ months. In general, rabbits kept under backyard conditions in tropical countries will not perform so well, particularly if they are not fed on balanced high-energy and protein diets. The advantages of such systems are that meat can be produced relatively cheaply with low inputs. A reduction in productivity is acceptable as long as costs do not outstrip returns.

In the author's experience, the production figure of 20 young reared/doe/year (4 litters) is remarkably common in a number of developing countries. Slaughter weights of 2 kg are attained in anything up to 6 months, and occasionally a longer period is needed to achieve this weight. This is true even in some semi-commercial units using home-mixed concentrate rations.

There is clearly room for improvement, though the performance levels quoted for UK commercial rabbit units would not be achieved without recourse to intensive high-input systems. Even with low-input backyard systems, considerable progress could be made by such means as the identification and development of breeds and strains best suited to backyard conditions, the raising of general management standards and, in particular, by better use being made of locally available feedstuffs.

In the author's experience, greater attention needs to be paid to record keeping, particularly in rabbit development projects. Accurate records, even simple ones, are essential if any systematic progress is to be made and various production problems dealt with, particularly those concerned with breeding and feeding.

Escaped domestic stock. It should be pointed out that from the evidence available there is no danger of escaped domestic rabbits causing problems on continents in the tropics (Owen, Morgan and Barlow, 1977). Even in Australia, escaped domestic stock gave little trouble in the mid-19th century (Fenner and Ratcliffe, 1955). The trouble in that country only began when wild rabbits were released and even those did not permanently colonize the tropical parts of the country (Myers and Parker, 1965).

On small islands, the situation may be different, but there are no records of escaped domestic rabbits giving rise to problems on islands inhabited by people.

Discussion. Rabbits, like any other form of livestock, cannot be universally recommended, regardless of conditions in different areas and countries. Nevertheless, in association with other classes of livestock, rabbits can, and are beginning to, play an important role in subsistence farming in some countries. A number of problems have, of course, been encountered, the nature and severity of which vary according to the area and country concerned. These problems have resulted in failures, chiefly among inexperienced farmers who did not receive adequate instruction, some of whom attempted to set up commercial units prematurely without proper supporting services and market outlets.

At the same time, there is evidence of considerable success in some areas. The success rate has been relatively high in countries where government support has been strong, such as in Ghana where a National Rabbit Project was set up. This Project has provided both breeding stock and practical information to farmers in many parts of the country, as well as mounting a vigorous publicity programme to promote rabbit meat consumption. The Government of Mozambique is also setting up a National Rabbit Programme (Gaspari, 1978).

Finally, it is of the utmost importance that there be an exchange of ideas and information between various rabbit producers and projects both within and between countries, such as that which took place at the Workshop on Rabbit Husbandry in Africa. The provision of new information on such topics as nutrition and health, by research, practical experience and field studies, is of little value unless it can be readily disseminated. National rabbit associations and the recently formed World Rabbit Science Association can do much to achieve this. However, such associations cannot survive without support. It is up to government organizations, farmers, and all other interested bodies to provide such support.
References

ABDOUL-SEOU, A.A., ABDEL-SALAM, F.E., RAIFAN, M.H., RAIFAT, M.A. & ABOU-
RAYA, A.R. 1970. Effect of feeding different proportions of green fodder or hay
10(2): 209-222.

In Proc. Workshop on Rabbit Husbandry

BAILEY, H.S. 1978. Comparative
morphology of the hindgut and its nutritional
significance. J. Anim. Sci., 46(6): 1800-
1902.

BUTCHER, C., OWEN, E., BRYANT, M.J.,
Paner summaries of the British Society of
Animal Production, Winter Meeting,
1980.

CHEEKE, P.R. 1978. Alfalfa as a feed-
stuff for rabbits. J. appl. Rabbit Res.,

CHEEKE, P.R. 1979. Comparisons of
comfrey and alfalfa: composition, protein
distribution and digestibility. J.

DIAZ-ALFARO, J.R. 1954-55. La alimentación
entre los mexicanos. Revista Mexicana
de estudios antropológicos, 14(1): 105.

DICKINSON, J. 1977. Recent studies in
rabbit nutrition. In Annual reports of
Studies in animal nutrition and allied
studies, 33: 120-125. Bickbuck, Aber-
deen, Scotland, the Rowett Research
Institute.

EL AMIN, F.M. 1978. Rabbit husbandry
in the Sudan. In Proc. Workshop on
Rabbit Husbandry in Africa, Morogoro,
Tanzania, 1978, p. 29-42. Stockholm, Sweden, IFS.

Myxomatosis. London, Cambridge Univ.

FIERRO, V.F. & RATNAVANI, J.A. 1975. A
study of the influence of three different
ferage crops on the performance of
breeding rabbits in the Araneta University

GASPAR, D. 1978. Rabbit breeding and
Workshop on Rabbit Husbandry in
Africa, Morogoro, Tanzania, 1978, p. 49-
51. Stockholm, Sweden, IFS.

JANIS, C. 1976. The evolutionary strategy
of the equidae and the origins of rumen
and caecal digestion. Evolution, 30:
757-764.

KANGU, L.D. 1978. Rabbit husbandry in
the Togo. In Proc. Workshop on Rabbit
Husbandry in Africa, Morogoro, Tan-

LLAMAS, R. 1955. Alimentación de los
antiguos mexicanos. Anales del Insti-
tuto de Biología, México, 6: 32.

LUKEFAHR, S.D., CAVENY, D.D., CHEEKE,

LUKEFAHR, S.D. 1979. Commercial rabbit
production in Korea. J. appl.

MACHIN, D.H., BUTCHER, C., OWEN, E.,
BRYANT, M. & OWEN, J.E. 1980. The
effects of dietary metabolizable energy
concentration and physical form of the
diet on the performance of growing
rabbits. In Proc. 2nd World Rabbit
Congress, 14-18 April 1980, Barcelona,
Spain, p. 65-71. WRSA.

McNutt, J.I. 1978. Methods of smallholder
rabbit production. In Proc. Workshop
Stockholm, Sweden, IFS.

MAMATTAH, N. 1978. Sociological aspects
of introducing rabbits into farm prac-
tices. In Proc. Workshop on Rabbit
Husbandry in Africa, Morogoro, Tan-
zania, 1978, p. 93-98. Stockholm,
Sweden, IFS.

MYSORE, K. & PARKER, B.S. 1965. A study of
the biology of the wild rabbit in
climatically different regions of eastern

NATIONAL ACADEMY OF SCIENCES. 1977.
Leucacens leucoccephala: new foliage and
tree crop for the tropics, p. 31, 37, 38.
Washington, DC. NAS.

ODONNOR, L.N. 1978. A new method of
rabbit production. In Proc. Workshop
Stockholm, Sweden, IFS.

OLDFIELD, J.E. 1979. Rabbit production in
3-4.

OWEN, J.E. 1978. Rabbit production in
tropical developing countries: a review.

Rabbit production in Mexico. Proc.
2nd World Rabbit Congress, 14-18 April
1980, Barcelona, Spain. WRSA.

OWEN, J.E., MORGAN, D.I. & BARLOW, J.
1977. The rabbit as a producer of
meat and skins in developing countries.

RAMCHURN, R. 1978. New feed resources
Workshop on Rabbit Husbandry in
Africa, Morogoro, Tanzania, 1978, p. 129-
135. Stockholm, Sweden, IFS.

REDDY, N.V., RAI, D.R. & CHEN, C.P.
1977. Comparative performance of
broilers and rabbits. Nutrition Reports
Int., 16: 133-137.

RODRguez, R.V. 1965. La comida en
México antiguo y moderno. México,
Porraca.

RUGG, J.W. 1978. Housing of rabbits in
Africa. In Proc. Workshop on Rabbit
Husbandry in Africa, Morogoro, Tan-
zania, 1978, p. 175-179. Stockholm,
Sweden, IFS.

SCHURG, W.A. & REID, B.L. 1979. Energy
and fiber utilization in the growing rab-

Workshop on Rabbit Husbandry in
Africa, Morogoro, Tanzania, 1978,
p. 163-171. Stockholm, Sweden, IFS.

Comparison of digestion in horses, ponies,
rabbits and guinea pigs. J. Anim. Sci.,
28: 842-847.

SHIVASTANA, P.N. & MUKHERJEE, D.P.
1978. Effect of thermal stress on body
temperature of Albino and non-Albino

The performance of New Zealand White
rabbits on dried green feeds. British
Society of Animal Production, Winter

WILLIAMS, D. 1978. Rabbit raising in
Saboba area. In Proc. Workshop on
Rabbit Husbandry in Africa, Morogoro,
Tanzania, 1978, p. 180-182. Stockholm,
Sweden, IFS.

ZUENER, F.E. 1963. A history of domes-
ticated animals, 2nd ed. London,
Churchill.