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Abstract. Matrix models have been used to model population growth of organisms for
many decades. They are popular because of both their conceptual simplicity and their
computational efficiency. For some types of organisms they are relatively accurate in
predicting population growth; however, for others the matrix approach does not adequately
model growth rate. One of the reasons for the lack of accuracy is that most matrix-based
models implicitly assume a specific degree of variability in development times for the
organism. Because the variability is implicit, the implied variances are often not verified with
experimental data. In this paper, we shall present extensions to the stage-classified matrix
models so that organisms with arbitrary means and standard deviations of development times
can be modeled.
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INTRODUCTION

The time taken for an organism to reach maturity is a

fundamental component of its life history and of interest

to both practical and theoretical ecologists. Studies have

shown development rates of organisms are affected by a

range of environmental factors including food, moisture

and nutrient availability (e.g., Fischer and Fiedler 2000),

pollutants (Michaud and Grant 2003, Wang et al. 2004),

inter- (Teng and Apperson 2000) and intra- (Haukioja et

al. 1988, Schneider et al. 2000, Ruohomaki et al. 2003)

species competition and for poikilotherms especially,

temperature (Davidson 1944, Taylor 1981, Pipe and

Walker 1987). In turn, ecologists have attempted to

assess the practical and theoretical consequences of

maturation times. For example, phenological popula-

tion models have been a central tenet for insect pest

management and sustainable resource management

programs. Here the primary interest is how environ-

mentally driven changes in maturation time affect the

population dynamics of a species. Confronted with the

same phenomenon, theoretical ecologists have studied

plasticity in development traits (and the associated

trade-offs between other life-history components) in an

attempt to explain differences in the vital rates of

organisms inhabiting different habitats (e.g., Reznick

and Endler 1982, Reznick et al. 1990, Blanckenhorn

1998). In both cases, mathematical models play a critical

role in evaluating the ecological significance of develop-

ment rates by placing them into more relevant popula-

tion level effects.

Despite general interest in the development or growth

rates of organisms, most work has involved measure-

ment and interpretation of the ‘‘average’’ response of an

individual within a population rather than variations in

the responses of individuals that make up the population

(intrapopulation variation [Peacor et al. 2007]). Intra-

population variation in measured development rates (or

any other life-history parameters) may arise from (1)

sampling errors (which we shall ignore in this discus-

sion), (2) phenotypic variation, and (3) genetic variation

(Van Tienderen 1995). The latter two mechanisms have

been demonstrated and quantified in a number of

studies. For example, models of southern pine beetle

(Dendroctonus frontalis) development times can be

explained by a combination of temperature and intrinsic

variability in the development rates of individuals

(Wagner et al. 1985). Liu and Meng (1999) used a

similar model to simulate development in an aphid

(Myzus persicae) and concluded that the distribution of

development times at constant temperatures could be

used to predict the distribution of development times

under fluctuating temperature regimes. Both studies

suggest innate variations in the growth rates of cohorts

of individuals experiencing identical environments.

Other studies have demonstrated environmentally driv-

en variation in individual development times. For

example, Ryer and Olla (1995) measured a greater

variation in the development rates of salmon cohorts

subjected to competition for food, while Twombly

(1993) detected both genetic and environmentally driven
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intrapopulation variation in the development rates of a

copepod. From a modeling point of view it can be

concluded that evaluating the population level effects of

development rate variability is driven by two factors.

The first is an appreciation of the innate and environ-

mentally driven variability in individual development

times. This requires a strong definition of the focus

population including an appreciation of implied versus

explicit handling of environmental variation. Second,

mathematical tools are required that allow accurate

representation of development time and intrapopulation

level variability and allow them to be translated into

more meaningful ecological outputs.

Matrix models were first used to model populations

by Lewis (1942) and Leslie (1945, 1948). Since the initial

efforts at using matrices to model populations, there

have been many extensions in an effort to improve the

matrix method and insure their applicability for a

variety of organisms. In this paper, we are particularly

interested in the stage-classified matrix model (see

Caswell [2001] for a comprehensive review). The appeal

of this approach is that it allows the life cycle of an

organism be divided into discrete stages. Such divisions

are natural for a wide variety of organisms and

essentially allow different life-history parameters to be

attributed to each stage. For example, a model of insect

populations might be delineated by morphological

stages. For other organisms life history parameters

might be correlated with size or weight.

A major difficulty with the standard matrix popula-

tion modeling approach is the assumption that the

organism spends a geometrically distributed (random)

time within each stage; whereas, insects rarely have

geometrically distributed development times. Caswell

(2001) provides two extensions to the stage-classified

matrix model to overcome the restriction on develop-

ment times; namely, a variable stage duration model and

a negative binomial stage duration model. The variable

stage duration model provides characteristics for the

limiting distribution if the population reaches an

equilibrium age distribution and is not well suited to

obtain characteristics of a population not at steady state.

The negative binomial stage duration model is ideal if

the ratio of the mean squared to the sum of the variance

plus the mean is approximately equal to a constant (see

Caswell 2001: Eq. 6.118). The goal of this paper is to

generalize the negative binomial case so that organisms

with general mean and variance of development times

can be modeled. For those familiar with Markov

processes, this paper is analogous to generalizing Erlang

models to phase-type models. Note that the Erlang

distribution is the sum of exponentials while the negative

binomial is the sum of geometrics. The usual formation

of phase-type models is the extension of Erlang models

to include arbitrary means and variance while we

propose a discrete version of the phase-type models as

the extension of the negative binomial. Of course to

create a population model, we shall also include

fecundity terms to the phase-type structure.

The remainder of this paper is organized as follows.

The next section presents Caswell’s matrix model and

gives estimates for the matrix parameters correcting an

error from Caswell’s text regarding parameter estima-

tion, then we give a brief overview of discrete phase-type

distributions that will be used to overcome the implicit

assumption of geometrically distributed development

times. Next, we present the phase-type population

model, give a numerical example, and finally discuss of

the importance of including variances as well as means

for the description of life stages. The Appendix presents

the mathematics necessary to demonstrate an error

contained in Caswell’s (2001: Eqs. 6.97 and 6.98)

formula for parameter estimation.

A STAGE-CLASSIFIED MATRIX MODEL

Many plant and animal populations have discrete life

stages each associated with different vital rates (survival,

fecundity, or development rates). The stage-classified

matrix model allows the representation of animal or

plant populations according to these distinct morpho-

logical or physiological stages. For example, modeling

an insect population lends itself naturally to a stage-

classified matrix model. In the case of insects, their life

histories are defined by distinct instars that drive distinct

behaviors and ultimately differences in vital rates. For

other populations, stages might be more appropriately

delineated by size, physiology, or developmental status.

In this paper, we use an insect population as an

example. We will attempt to keep the notation simple by

only using three stages: (1) eggs, (2) immatures, and (3)

adults. It is a simple matter to generalize from this

situation to any number of stages. We shall also only

keep track of females under the assumption that survival

to the adult stage implies being fertilized. The purpose of

the model is to track the expected number of (female)

insects over time, and our time scale will be a single day.

The number of females in each stage at time 0 is

assumed known and is given by the vector n(0)¼ [ne(0),

ni(0), na(0)] denoting the number of eggs, immatures,

and adults, respectively, at time 0. The number of

females in each stage at time t is denoted by the vector

n(t)¼ [ne(t), ni(t), na(t)] and is calculated according to the

recursion

nðt þ 1Þ ¼ AnðtÞ ð1Þ

where

A ¼
pe;e 0 f
pi;e pi;i 0

0 pa;i pa;a

2
4

3
5:

The p terms represent transition probabilities, in other

words, pe,e is the probability that an egg one day will

remain as an egg the next day, pi,e is the probability that

an egg one day will become an immature the next day,

pi,i is the probability that an immature one day will
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remain as an immature the next day, pa,i is the

probability that an immature one day will become an

adult the next day, and pa,a is the probability that an

adult one day will remain as an adult the next day.

Finally, f denotes the fecundity of adults and is equal to

the expected number of female eggs laid each day by an

adult. Note that we must always have the following

relationships: pe,eþ pi,e , 1, pi,iþ pa,i , 1, and pa,a , 1.

(Notice that these relationships are stated as strict

inequalities implying that there will always be some

mortality associated with any stage. We also point out

that for those who are familiar with Markov models,

that both the Leslie matrix and the Caswell matrix

approaches use the transpose of the usual Markov

matrix formulation. Of course, the fecundity term keeps

the matrices from being Markov.)

In this section, our goal is to build a model of a

population at a fixed temperature. With this assumption,

suppose that experiments have been conducted at a fixed

temperature in which development times for a fixed

number of eggs are recorded. From these data, the mean

time (standard deviation will be discussed in Phase-type

population model) to develop from egg to the immature

insect is obtained and the fraction of survival is

determined. Note that survival is implicit within the

development times so that daily survival is not directly

knownbut only the fractionof eggs that ultimately survive

to immatures is known. Let t̄e denote themean time for an

insect to develop from the egg stage to an immature given

that the insect survives, and let se denote the fraction of

eggs that eventually reach the immature stage. For

example, if we start with a cohort of 1000 eggs and only

650 eggs survive to become immature insects, then t̄e is the
average development time for those 650 eggs and se¼0.65.
Likewise, t̄i and si are the mean development time for the

immature to develop into an adult with its survival given

by si; and t̄a is the mean life length for an adult.

Clearly from our model, the time spent in any one

stage (denoted by Tk for stage k) is random and is

described by a geometric distribution. In particular, the

sojourn time of stage k, for k 2 fe, i, ag is given as

P Tk ¼ tf g ¼ ð1� pk;kÞ pt�1
k;k for t ¼ 1; 2; � � � : ð2Þ

The mean of the distribution is thus given as

E½Tk� ¼
1

1� pk;k

which leads to the following parameter estimates:

pe;e ¼ 1� ð1=teÞ ð3Þ

pi;i ¼ 1� ð1=tiÞ ð4Þ

pa;a ¼ 1� ð1=taÞ ð5Þ

assuming that all mean development times are greater

than 1. When the insect leaves one stage, it will either

transition to the next stage or die. The ultimate

probability of surviving to the next stage is the ratio of

the probability of transition to the next stage divided by

the probability of leaving the stage; thus we have the

following:

pi;e ¼ se=te ð6Þ

pa;i ¼ si=ti: ð7Þ

It should be noted that Eqs. 3–7 are different

estimators than given by Caswell (2001: Eqs. 6.97 and

6.98) due to an error in his formula in the middle of page

160. Caswell defines two terms (the survival probability

given by rk and a development rate given by ck) and

then defines the transition probability in terms of those

terms (namely, he sets pk,k ¼ rk(1 � ck)). However,

Caswell uses only development (i.e., ck) in the duration

probability formula (equivalent to our Eq. 2) instead of

using rk(1 � ck); thus incorrectly ignoring the effect of

survival on the stage sojourn time. See the Appendix for

a more detailed discussion of the importance of not

using a survival term within the transition probabilities.

We shall define fecundity, f, to be the expected

number of female eggs laid per adult female per day.

To give the estimator for f, let the number of female eggs

per female be denoted by neggs. For example, assume

that from a starting cohort of 100 (female) adults there

are a total of 1800 eggs oviposited over the life of the

cohort. Further assume that some insects only lived a

day or so, some lived as many as 10 days, but the

average life span of the adults was five days. In this

example, we would have neggs¼ 9 (notice this assumes a

50:50 split in male and female eggs) yielding f ¼ 1.8. In

other words, the fecundity terms is given by

f ¼ neggs=ta : ð8Þ

PHASE-TYPE DISTRIBUTIONS

Phase-type distributions are usually defined as con-

tinuous distributions that are generalizations of Erlang

distributions, i.e., the sum of exponential random

variables (for a review, see Neuts [1981]). Since the

matrix approach for population modeling uses discrete

time, we shall define a discrete version of phase-type

distributions in order to model discrete development

processes that are not geometric. Conceptually, we

divide each developmental stage into phases. Note that

a ‘‘stage’’ refers to an observable biological period

within the life cycle of the insect; whereas, a ‘‘phase’’

refers to a fictitious construct used in modeling the time

that an insect spends within a stage. As an example,

assume we have collected data and determined that the

average time in the immature stage is 10 days with a

standard deviation of 6.32 days. If we model the

immature stage using one phase, as is assumed in the

above section, the probability of remaining in that phase

would be set at 0.9 (i.e., pi,i¼0.9) so that the mean would

be 10. However, since the distribution is geometric, the

standard deviation must be 9.49 days (i.e.,
ffiffiffiffiffiffi
pi;i
p

/(1� pi,i))

instead of 6.32 days so we know that a single phase

yields an incorrect distribution. However, we could

model immature development using two phases. Upon
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leaving the egg stage, the immature insect enters the first

phase and each day there is a probability of 0.8 of

remaining in that phase. Upon leaving the first phase,

the immature enters the second phase and again there is

a probability of 0.8 of remaining in the second phase

each day. Upon leaving the second phase, the insect is

considered to be in the adult stage. Thus, the time spent

in the immature stage is the sum of two geometric

distributions yielding a total mean time of 10 days and a

standard deviation of 6.32 days. (Note that each phase is

geometric having a mean of 5 days and a variance of 20

so that the mean of the total time is the sum of the two

individual means and the standard deviation of the total

time is the square root of the sum of the two variances.)

Thus, using two phases to model the immature stage

yields a model consistent with the sample mean and

sample variance for this insect. The idea behind the

phases is to choose the number of phases and the

probabilities associated with the phases such that the

mean and standard deviation might match the mean and

standard deviation of our sample data; however, since

each phase retains the geometric assumption, the general

approach of the matrix models can still be used.

To state the above description mathematically, we

need an initial probability vector, a, and the matrix

Q 0

q̃ 1

� �
ð9Þ

where a is a column vector of dimension m of

nonnegative numbers whose sums equal 1, Q is a m 3

m nonnegative matrix with each column sum being less

than or equal to 1, and q̃ is a row vector of dimension m
where each element is such that the column sum of the

full matrix equals 1. (In other words, q̃(j)¼ 1� Rm
i¼1 Q(i,

j) for each j 2 f1, � � �, mg.) The idea of the phase-type

distribution is that the submatrix Q represents a

collection of m phases associated with a stage and the

final column represents an absorbing state. We think of

a process that probabilistically starts in one of the

phases according to the probabilities given by a, spends
some time moving among the m phases, and eventually

gets absorbed in the final state. Thus, a phase-type

distribution is defined to be the time that it takes to

move into the final absorbing state. Note that we have

implicitly assumed that the final state is the only

absorbing state in the system so that the matrix Q must

be structured so that all its states are transient.

As an example, consider the two-phase model

representing the development with a mean of 10 days

and a standard deviation of 6.32 days. This would yield

the following:

a ¼ 1

0

� �
Q ¼ 0:8 0

0:2 0:8

� �

and

q̃ ¼ ð0 0:2Þ :

A phase-type distribution is identified by reference to

the ordered pair (a, Q). (Note that vector q̃ is implicitly
defined once the matrix is given. We also point out for
those familiar with Markov chain terminology, that the
matrix Q is the transpose of the usual (sub) Markov
matrix. We use the transpose to be consistent with the
historical use of matrix population models.)

It is not too difficult to develop expressions for the
mean and standard deviation for a discrete phase-type
distribution, and more importantly, these expressions
are relatively easy to compute within a computer
program or in a spreadsheet program. Before giving
the expressions for the mean and variance, we observe
that the distribution function for a random variable, T,
that has a phase-type distribution defined by (a, Q) is

P T ¼ tf g ¼ q̃ Qt�1 a for t ¼ 1; 2; � � � :

The main difficulty in our computations of the
moments is the need to obtain the so-called potential
matrix, denoted by R, which is defined as

R ¼ ðI�QÞ�1: ð10Þ

Note that the inverse always exists as long as Q is
nonnegative and the column sums are less than or equal
to 1 with at least one column having a strict inequality
and all states represented by Q are transient.

Let T be a discrete phase-type random variable
defined by (a, Q). We now give the definitions of the
first three factorial moments of T in terms of a and Q,
and for purposes of completeness, give the relationship
of the centralized moments in terms of the factorial
moments:

E½T� ¼ q̃ R2 a ð11Þ

E½TðT � 1Þ� ¼ 2q̃ Q R3 a ð12Þ

E½TðT � 1ÞðT � 2Þ� ¼ 6q̃ Q2 R4 a ð13Þ

r2 ¼ E½TðT � 1Þ� � lðl� 1Þ ð14Þ

E½ðT � lÞ3� ¼ E½TðT � 1ÞðT � 2Þ�

� ðl� 1Þð3r2 þ l2 � 2lÞ ð15Þ

where l¼E [T ] and R is the potential matrix associated

with Q from Eq. 10.

The advantage of phase-type distributions is the great
flexibility that this class provides. It can also be a source
of frustration since there are often multiple parameter
sets that yield the same mean and standard deviation;
thus, parameter estimation within this class is not
straightforward. In general, as the number of phases
(i.e., the dimension of the matrix Q) increases, the
coefficient of variation (i.e., the standard deviation
divided by the mean) decreases. We provide here some
general rules and leave the specific question of the best
statistical estimation procedure up to a future paper.

Let us assume that we wish to model development

times having a mean given by t̄ and a variance given by
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r2. The first step is to determine the number of phases

necessary for the model. If the expression

k ¼ t2=ðr2 þ tÞ ð16Þ

yields an integer, the resulting model is relatively easy;

namely, it is the sum of k geometric distributions. In

other words, for an integer result in Eq. 16 use a phase-

type distribution with m¼k, the initial probability vector

a ¼ (1, 0, . . ., 0), and the transition matrix given by

Q ¼

q 0 0 � � � 0 0

1� q q 0 � � � 0 0

0 1� q q � � � 0 0

..

. . .
. ..

.

0 0 � � � q 0

0 0 � � � 1� q q

2
66666664

3
77777775

ð17Þ

where

q ¼ 1� k=t ð18Þ

and the dimension of Q is m 3 m. To understand Eqs. 17

and 18, remember that a phase with associated

probability q yields a mean time of 1/(1 � q) and a

variance of q/(1� q)2; thus the above yields a model that

is the sum of k phases, each with mean t̄/k and variance

t̄(t � k)/k2. Since the phases are independent, the

variances add as well as the means yielding the desired

mean and variance.

Determining the number of phases and appropriate

parameter values are more difficult when the variance of

development times is such that Eq. 16 does not yield an

integer. For example, assume we would like to model

development times with a mean of 10 days and a

standard deviation of 5.75 days. Using these values in

Eq. 16 yields k ¼ 2.322. Notice that the sum of two

identical geometric distributions yielding a mean of 10

would produce a standard deviation of 6.32 and the sum

of three identical geometric distributions yielding a

mean of 10 would produce a standard deviation of 4.83.

However, it is possible by taking a mixture of these two

sums to produce any standard deviation between 4.83

and 6.32. Specifically for this example, the phase-type

distribution defined by (a, Q), where

a ¼ ð0:452; 0; 0:548; 0; 0Þ>

Q ¼

0:7452 0 0 0 0

0:2548 0:7452 0 0 0

0 0 0:7452 0 0

0 0 0:2548 0:7452 0

0 0 0 0:2548 0:7452

2
66664

3
77775

will yield a mean of 10 and a standard deviation of 5.75.

This phase-type distribution is equivalent to a mixture of

two distributions where there is 45.2% chance of picking

the first distribution of the mixture and a 54.8% chance

of choosing the second. The first distribution in the

mixture is the sum of two geometric distributions and

the second distribution in the mixture is the sum of three

geometric distributions.

The following steps generalize the above method to

accommodate most means and variances that would be

relevant for population modeling since it is more likely

to have variances that are less than that produced by the

geometric distribution than variances that are greater. In

the steps below, it is assumed that we wish to establish a

phase-type distribution to model development times

with a mean denoted by t̄ and a variance denoted by r2

such that r2 � t̄ 2 � t̄.
Step 1.—Determine k according to Eq. 16. If k is an

integer, use the phase-type distribution defined by Eqs.

17 and 18; otherwise, proceed to step 2.

Step 2.—Let bkc denote the value of k rounded down

to the nearest integer, and let dke denote the value of k

rounded up to the nearest integer. The phase-type

distribution will be the mixture of the sum of bkc
geometric distributions and a sum of dke geometric

distributions; thus the number of phases is given by

m ¼ bkc þ dke ¼ 2dke � 1 :

Step 3.—Define the probability vector a¼ (a1, a2, � � �,
am), where a1 is given by

a1 ¼
dkeðr2 þ tÞ � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dke½t2 � bkcðr2 þ tÞ�

q

r2 þ t þ t2
ð19Þ

where adke ¼1� a1, and ai¼0 for all i except i¼1 and i¼
dke.

Step 4.—Define the matrix Q¼ (qij) for i, j¼ 1, � � �, m
by

qij ¼

1� dke � a1

t
if i ¼ j; j ¼ 1; � � � ; m

dke � a1

t
if i ¼ j þ 1; j ¼ 1; � � � ;

m� 1; j 6¼ bkc

0 otherwise:

8>>>>>>><
>>>>>>>:

ð20Þ

Each phase within the matrix Q defined above has the

same probability of staying within the phase and the

initial probabilities are structured so that the process

either starts in phase 1 with probability given by a1 and
proceeds through the first bkc phases and then is

absorbed or starts in the dketh phase with probability

1 � a1 and proceeds through the final dke phases and

then is absorbed. Thus, the above phase type distribu-

tion is a mixture of two distributions, each of which is

the sum of geometric distributions so that the resulting

mean equals t̄ and the variance equals r2.

PHASE-TYPE POPULATION MODEL

We return to our basic insect model involving three

stages of insect development: eggs, immatures, and

adults. Furthermore, we now assume that data have

been collected so that we have estimates for the mean

and standard deviation of the development times in each

of three stages, plus we have survival rates and fecundity

estimates. The development times for eggs are assumed
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to follow a phase-type distribution defined by (ae, Qe) of

dimension me, the time that the insect spends as an

immature follows a phase-type distribution defined by

(ai, Qi) of dimension mi, and the time as an adult is a

phase-type distribution defined by (aa, Qa) of dimension

ma.
The population model still follows the same iteration

scheme as defined by Eq. 1, except now the stage-phase

matrix is defined by

A ¼
Qe 0 aef

se aiq̃e Qi 0

0 siaaq̃i Qa

2
4

3
5 ð21Þ

where f is a row vector of dimension ma with each

component equaling f¼ neggs/t̄a.

As a reminder, the product of a column vector times a

row vector is a rectangular matrix. In other words, the

product of the column vector c ¼ (c1, � � �, cm) times the

row vector r¼ (r1, � � �, rn) yields an m3 n matrix whose i

� j element is given by ci3 rj. An equivalent way to think

of this product is to consider the column vector c as an

m3 1 matrix and the row vector r as a 13 n so that their

product must yield an m3nmatrix. Notice that all three

products within the matrix A involve a column vector

times a row vector.

The population vector, n also needs to be partitioned

into phases; thus, the population on day t is represented

as

nðtÞ ¼ ½neðtÞ j niðtÞ j naðtÞ�

where ne(t), ni(t), and na(t) are column vectors of

dimension me, mi, and ma, respectively. In order to

determine the population size of eggs, immatures, or

adults, we simply sum the components of the individual

appropriate vectors.

To illustrate the use of phase-type distributions in the

population model, assume that following data: the mean

and standard deviation for egg development are 8 days

and 4.9 days, respectively, with a 40% survival rate from

egg to immatures. The mean and standard deviation of

development times for immatures are 2 days and 1.414

days, respectively, with a 60% survival rate from the

immature to the adult stage. Finally, the mean and

standard deviation of the lifetime of adults is 5 days and

3.5 days, respectively. Adults average 5.2 female eggs

distributed uniformly over their adult life span yielding a

fecundity of 1.04 female eggs per day per female.

The phase-type distribution for egg development

times are straightforward because the application of

Eq. 16 results in an integer; namely, k¼ 2 so that we set

me equal to 2, yielding

ae ¼
1:0
0

� �
Qe ¼

0:75 0

0:25 0:75

� �
:

The standard deviation for immature development is the

same as a geometric distribution so multiple phases are

not needed for modeling the immatures; thus, we have

ai ¼ ½1:0� Qi ¼ ½0:5�:

The phase-type distribution representing adult lifetimes

requires three phases because the application of Eq. 16

resulted in a non-integer; namely, k¼ 1.45 so that we set

ma equal to 3. The application of Eqs. 19 and 20 yields

aa ¼
0:35

0:65

0

2
4

3
5 Qa ¼

0:67 0 0

0 0:67 0

0 0:33 0:67

2
4

3
5:

Combining the above phase-type distributions with

the appropriate survival and fecundity values yields

following population matrix that can now be used with

Eq. 1 to produce a population trajectory for this

organism:

A ¼

0:75 0 0 1:04 1:04 1:04

0:25 0:75 0 0 0 0

0 0:1 0:5 0 0 0

0 0 0:105 0:67 0 0

0 0 0:195 0 0:67 0

0 0 0 0 0:33 0:67

2
6666664

3
7777775
:

NUMERICAL ANALYSES

In this section, we use the techniques outlined in the

preceding sections to verify the integrity of the approach

and to highlight the importance of correctly handling

variance in the development rates/times of organisms.

To simplify our analyses we consider a hypothetical

organism with two stages: juvenile and adult. Our goal is

to use our model to illustrate how the population rate of

increase is affected when the mean of the development

times is held constant and the variance changes. (The

rate of increase for the population is a time invariant

measure of a population’s growth rate and is frequently

used as a simple index of population performance, e.g.,

Caswell 2001.) We shall also explore the interaction

between variance in development times and other life-

history parameters (fecundity, adult longevity, and

juvenile survival). The base set of parameters for our

hypothetical organism is detailed in Table 1. The

coefficient of variation (CV) of development times is

systematically varied with either fecundity, adult lon-

gevity, or juvenile survival through the ranges specified

in Table 1. For each pair of manipulated parameter

values, we calculate the rate of increase of the modeled

population and use this as a measure of population

performance.

Figs. 1–3 show the results of these analyses, presented

as three-dimensional surfaces. The graphs display the

sensitivity of population growth rate (rate of increase) to

the manipulated parameter values. In all cases, it can be

seen that the rate of increase predicted is sensitive to the

variance of development times for the (hypothetical)

organism. It can also be seen that the size of this effect is

related to the specific life-history of the organism– for

example the rate of population increase is highly

sensitive to the variance in development times when

fecundity, adult longevity, and juvenile survival are high.
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It might also be noted that the maximum CV of juvenile
development time is 0.9746 because this is the CV of a

geometric distribution that has a mean of 20.

There are a couple of important implications of these
graphs. The first alludes to the fact that population
dynamics are sensitive to both the mean and the

variance of development or maturation times. The
second implication of these analyses is that since models

are used to simplify complex systems, modelers must
make informed decisions about what details to strip

away and the consequences of these simplifications
considering their specific modeling goals. The informa-

tion presented here suggests that measuring and
correctly representing the variance of development rates

are crucial for obtaining accurate and reliable model
outputs.

To show the validity of our matrix model, an
individual-based simulation model was developed in

which individual organisms were created, developed,
produced new organisms, and died according to random

variates that were generated according to the distribu-
tions being modeled. The individual-based simulation

approach allows for the construction of discrete
individuals within the computer that follow specific sets

of rules described by formulas of almost any complexity
(see the Appendix for a description of the methodology

used). As a result, complex life-history and behavior can
easily be incorporated into the simulation. Fig. 4 shows

a comparison of rates of increase calculated using both
the matrix approach outlined in this paper and the

individual-based simulation. It can be seen that over the
majority of the range of the simulations, the answers

given by the simulation model and the matrix approach
presented here are similar, and differ only by amounts

that are explained by the sample error associated with
obtaining finite rates of increase from a non-analytical

TABLE 1. Values used in sensitivity studies.

Parameter Value Range

Juvenile development time always 20 d fixed
Juvenile development time CV always varied 0–97.46%
Fecundity 2 offspring�female�1�d�1 1–10 offspring�female�1�d�1
Proportion of juveniles surviving 0.9 0.1–0.9
Mean adult longevity 5 d 1–10 d

FIG. 1. The sensitivity of the rate of increase to fecundity and intrapopulation variability of development time. The rate of
increase is a time-invariant measure of the growth of a population and is commonly derived from matrix models. The graph shows
rates of increase calculated for hypothetical populations with different fecundities (eggs per female per day) and different levels of
intrapopulation variability (but with a fixed mean of 20 days). Intrapopulation variation in development time is expressed as the
coefficient of variation (CV).
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FIG. 2. The sensitivity of the rate of increase to adult longevity and intrapopulation variability of development time. The rate of
increase is a time-invariant measure of the growth of a population and is commonly derived from matrix models. The graph shows
rates of increase calculated for hypothetical populations with different adult longevities and different levels of intrapopulation
variability (but with a fixed mean of 20 days). Intrapopulation variation in development time is expressed as the coefficient of
variation (CV).

FIG. 3. The sensitivity of the rate of increase to juvenile survival and intrapopulation variability of development time. The rate
of increase is a time-invariant measure of the growth of a population and is commonly derived from matrix models. The graph
shows rates of increase calculated for hypothetical populations with different juvenile survival (expressed as daily probability of
survival) and different amounts of intrapopulation variability (but with a fixed mean of 20 days). Intrapopulation variation in
development time is expressed as the coefficient of variation (CV).
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simulation. Notice that the CV of the geometric

distribution is slightly less than 1.0 so that the maximum

figure in the Fig. 4 is 0.95 instead of 1.0.

DISCUSSION

This paper describes some mathematical foundations

that enable matrix population models to accurately

represent intrapopulation variability in the development

rates of organisms. Using these techniques, model

outputs were practically identical (differences were

attributable to rounding error) to those from a more

complex, computationally intensive model. However the

matrix approach benefited from massive computational

savings. These methods are not the only option for

representing variability in the development rates of

populations (for a general review see Schaalje and Vaart

1989 and Caswell 2001 for matrix model methods).

However, matrix population models offer a number of

advantages over other techniques. These include an

extensive body of research, a suite of effective analytical

tools (e.g., Tuljapurkar and Caswell 1997, Caswell

2001), conceptually simple mathematical and ecological

representations and accessible methods and software for

simulation (e.g., standard matrix mathematics and

MATLAB).

Without modification (such as those detailed here or

the pseudostage approach adopted by Caswell 2001),

stage-structured matrix models represent geometrically

distributed development times. A geometric distribution

constructed so as to yield a mean development time of t̄
will have a CV equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=t

p
, which yields

significantly more variability than many organisms.

Table 2 reviews development times for a variety of

organisms. Our methodology suggests that the sensitiv-

ity of the model to variations in development rate is of

the same order of magnitude as fecundity, survival or

mean development times. Put simply, variations in the

development times of individuals in a population are

usually not geometrically distributed (they have a much

smaller CV). Given the sensitivity of populations to this

phenomenon, stage-structured matrix models that do

not account for realistic intrapopulation variability in

development are likely to yield erroneous results.

Other researchers have highlighted the importance of

intrapopulation variability and population the output of

population models. For example Bellows (1986) assessed

the impact of developmental variance on the growth of a

hypothetical insect population and found a negative

relationship between a CV of 0–60% and a positive one

thereafter (60–200%). In contrast, our findings suggest a

consistent positive relationship between population

growth rate and intrapopulation development time

variability. These differences may stem from difference

in the modeling methodologies used. Bellows used a

truncated normal distribution to describe distributions

in development rates. The distributions we use are from

a family formed from sums of geometric random

variables. We attribute the contrasting results to these

differences in the shape of the distributions used to

represent development times. In particular, the formu-

lation used by Bellows (1986) results in large changes in

the shape of the function representing distributions of

development times such that (in his hypothetical

population) the modal time of development is approx-

imately 1 day later for a CV of 0–60% than 60–200%.

This illustrates that both the shape of the developmental

distributions (early developers are particularly impor-

tant for population growth) and the relative timing of

life-history events are important components of popu-

lation models.

Although it can be shown that intrapopulation

variability in development time plays an important role

in the ecology of species, a survey of the literature (Table

2) shows that authors do not generally report these data.

Instead, studies tend to focus on mean development

times, usually reporting the standard error as an indicator

of the accuracy of this measurement. In some cases

(especially for controlled experiments), this is despite the

fact that mean development times are calculated by

measuring the development times for each individual in a

cohort (i.e., variation is measured by default). There may

be two reasons for this. The first is that the importance of

variability in development rate is generally not fully

appreciated by ecologists, a point that this paper aims to

address. Second, many studies that involve the measure-

ment of development rates are focused on hypothesis

FIG. 4. Equivalence of outputs from our matrix model
(solid line) and an individual-based simulation model (open
circles) parameterized to represent a range of intrapopulation
variability in development times (CV of development time). The
graph shows that the rates of increase estimated using our
matrix methods estimate are equivalent to estimates from a
more complex, computationally intensive individual-based
simulation model. In all cases, mean development time is fixed
(20 days) showing that intrapopulation development time has a
large effect on the rate of increase. Since the maximum CV for a
geometric distribution with mean 20 is 0.975, the results from
the matrix models are valid only up to this value.
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testing rather than the integration of findings into

population level effects via population models.

For example, Bridges (2000) presents a toxicity study

assessing the effects of the pesticide Carbaryl to different

life-stages of southern leopard frog and found that

although the mean development time (to metamorpho-

sis) was not significantly different between treatment

groups, some treatments led to changes in the number of

individuals displaying rapid growth rates. Bridges

concludes that since leopard frogs often breed in

temporary pools, individuals that develop before ponds

desiccate may contribute considerably to population

growth and therefore changes in the distribution of

development times may be ecologically significant.

However, our results also suggest that changes in the

intrapopulation variability in development times can

affect time invariant measures of population growth and

may thus provide a more straightforward interpretation

of such results.

The variability of intrapopulation development times is

often also studied as an explicable and adaptive ecological

phenomenon. Werner (1988) estimated that approximate-

ly 80% of all animal species have complex life-cycles and

theoretical ecologists in particular are interested in

understanding the fitness consequences of differences in

the timing and magnitude of the life-history events that

define this complexity. The majority of these studies have

focused on understanding why distinct populations of the

same species exhibit differences in the timing of life-

history events. Examples include the trade-offs between

growth and predation in guppies (Reznick and Endler

1982) and mayfly larvae (Peckarsky et al. 2001). However

a number of researchers have also attempted to explain

variation in development rates in organisms occurring

sympatrically. For example, Mangel and Stamps (2001)

TABLE 2. Variability in CV among organisms.

Species Stages Temperature (8C) Mean CV (%) Reference

Insect

Aglais urticae egg to adult 11.8 91.7 6.59 Bryant et al. (1997)
Aglais urticae egg to adult 32.8 13.6 4.41
Aglais urticae egg to adult 34 15.2 3.22
Inachis io egg to adult 12.2 118 1.90
Inachis io egg to adult 31.9 18.9 1.40
Inachis io egg to adult 33.7 25.3 4.18
Polygonia c-album egg to adult 12.1 69.6 7.62
Polygonia c-album egg to adult 32.9 19.1 4.16
Vanessa atalanta egg to adult 11.8 99 1.98
Vanessa atalanta egg to adult 32 17.3 4.33
Vanessa atalanta egg to adult 33.5 19.3 4.92
Tribolium confusum egg to adult 27 ;149 ;3.10 Bellows (1986)
Scathophaga stercoraria (yellow dung fly) egg to adult 10 79.51 5.49 Blanckenhorn (1997)
Scathophaga stercoraria egg to adult 15 36.42 5.14
Scathophaga stercoraria egg to adult 20 23.22 3.58
Scathophaga stercoraria egg to adult 25 21.2 4.90
Aphis gossypii birth to adult 15 12 9.12 Kersting et al. (1999)
Aphis gossypii birth to adult 20 8.1 16.00
Aphis gossypii birth to adult 25 5.7 10.47
Aphis gossypii birth to adult 30 4.5 12.81
Dendroctonus frontalis larval 15 44.83 26.50 Gagne (1980)

larval 20 23.08 15.40
larval 25 17.12 23.26
larval 27 27.69 25.20

Myzus persicae apterous (instars) 6.2 44.5 9.91 Liu and Meng (1999)
apterous (instars) 11.3 17.8 8.17
apterous (instars) 14.3 11.7 5.80
apterous (instars) 20.1 7.0 10.52
apterous (instars) 24.7 5.5 12.01
apterous (instars) 30 6.2 10.33

Copepod

Pseudocalanus minnutus egg to emergence 0 10.89 5.51 McLaren (1966)
egg to emergence 3.18 6.61 3.93
egg to emergence 4.6 5.91 4.57
egg to emergence 13.13 2.78 5.04

Amphibian

Scaphiopus couchii to metamorphosis unknown 14.57 4.30 Newman (1988)
Hyla pseudopuma to metamorphosis unknown 25.7 37.74 Crump (1989)

to metamorphosis unknown 25.0 33.26

Fish

Salvelinus fontinalis (Brook trout) egg 7.5 75.8 2.77 Hutchings (1991)
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present a review of the trade-off between growth and

survival and provide mathematical arguments for the

maintenance of intrapopulation variability in individual

development times. Other researchers believe that for

organisms that live in fluctuating and uncertain environ-

ments, variation in development times (or development

plasticity) is an adaptive response to these uncertainties.

The methods presented here allow effective control over

the distribution of development times amongst individu-

als and may therefore provide useful tools for further

research in this area.
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APPENDIX

A proof and discussion regarding the importance of not using a survival term within the transition probabilities of Eqs. 3–5
(Ecological Archives E090-004-A1).
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